Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 43,
  • Issue 8,
  • pp. 1333-1336
  • (1989)

A New Liquid-Crystal-Based Fiber-Optic Temperature Sensor

Not Accessible

Your library or personal account may give you access

Abstract

A new fiber-optic temperature sensor has been developed, based upon selective reflection from a cholesteric liquid crystal. The change of reflected-light intensity can be 40 times larger than background over a temperature range of only 0.4°C. For the demonstrated system, the temperature at which maximum reflection occurred was at 14.578°C, with a standard deviation of 0.026°C. The relative standard deviation of the peak reflected-light intensity was 7.1%. The dependence of the magnitude of reflection and that of peak temperature on the heating rate were studied. The response time of the present sensor is about 2 s, but it could be shortened with slight design modifications. Each sensor of the new type should be applicable to temperature sensing or control over a temperature range of about 1°C.

PDF Article
More Like This
Fiber micro-tip temperature sensor based on cholesteric liquid crystal

Jianyang Hu, Dong Zhou, Yueming Su, Shuangqiang Liu, Peixian Miao, Yanchao Shi, Weimin Sun, and Yongjun Liu
Opt. Lett. 45(18) 5209-5212 (2020)

Temperature-compensated optical fiber sensor for volatile organic compound gas detection based on cholesteric liquid crystal

Jianyang Hu, Yuzhou Chen, Zhenyu Ma, Li Zeng, Dong Zhou, Zenghui Peng, Weimin Sun, and Yongjun Liu
Opt. Lett. 46(14) 3324-3327 (2021)

Temperature sensor based on liquid-filled negative curvature optical fibers

Chengli Wei, Joshua T. Young, Curtis R. Menyuk, and Jonathan Hu
OSA Continuum 2(7) 2123-2130 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.