Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 47,
  • Issue 9,
  • pp. 1297-1310
  • (1993)

Investigation of Time-Dependent Phenomena by Use of Step-Scan FT-IR

Not Accessible

Your library or personal account may give you access

Abstract

The development, during the last decade, of modern step-scan interferometry instrumentation has allowed FT-IR to be applied to the study of time-dependent phenomena in ways not previously possible, because of the problems of uncoupling the spectral multiplexing from the temporal domain in the continuous-scan FT-IR mode. Specifically, the time regime from tens of nanoseconds to tens of milliseconds has been accessible to time-domain measurements to only a very limited degree with continuous-scan instrumentation and not at all for modulation-demodulation (frequency-domain) experiments in this time range. The step-scan technique not only works very well in this time regime and for slower phenomena, but is only prevented from application to faster processes by the signal strength, the speed of available detectors, the intensity of sources, and the speed and sophistication of the electronics. This paper surveys the various types of experiments which are either enhanced by use of step-scan FT-IR methods or are only possible by use of these techniques. The principles of step-scan instrumentation are reviewed, particularly those of retardation control, signal generation, and data acquisition, as well as the place of step-scan FT-IR relative to other techniques of dynamic vibrational spectroscopy. The importance of path difference (phase) modulation, particularly in frequency-domain measurements, the extraction and use of the signal phase, the creation of 2D FT-IR spectra, and the strategies for acquisition of both time- and frequency-domain data in the step-scan mode are discussed and illustrated.

PDF Article
More Like This
Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy

Markus Brandstetter, Andreas Genner, Clemens Schwarzer, Elvis Mujagic, Gottfried Strasser, and Bernhard Lendl
Opt. Express 22(3) 2656-2664 (2014)

High-information time-resolved step-scan Fourier interferometer

Georges Durry and Guy Guelachvili
Appl. Opt. 34(12) 1971-1981 (1995)

Step-scan time-domain terahertz magneto-spectroscopy

D. Molter, G. Torosyan, G. Ballon, L. Drigo, R. Beigang, and J. LĂ©otin
Opt. Express 20(6) 5993-6002 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.