Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 54,
  • Issue 3,
  • pp. 331-340
  • (2000)

Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration

Not Accessible

Your library or personal account may give you access

Abstract

Early in the next century, several space missions are planned with the goal of landing craft on asteroids, comets, the Moon, and Mars. To increase the scientific return of these missions, new methods are needed to provide (1) significantly more analyses per mission lifetime, and (2) expanded analytical capabilities. One method that has the potential to meet both of these needs for the elemental analysis of geological samples is laser-induced breakdown spectroscopy (LIBS). These capabilities are possible because the laser plasma provides rapid analysis and the laser pulse can be focused on a remotely located sample to perform a stand-off measurement. Stand-off is defined as a distance up to 20 m between the target and laser. Here we present the results of a characterization of LIBS for the stand-off analysis of soils at reduced air pressures and in a simulated Martian atmosphere (5-7 torr pressure of CO<sub>2</sub>) showing the feasibility of LIBS for space exploration. For example, it is demonstrated that an analytically useful laser plasma can be generated at distances up to 19 m by using only 35 mJ/pulse from a compact laser. Some characteristics of the laser plasma at reduced pressure were also investigated. Temporally and spectrally resolved imaging showed significant changes in the plasma as the pressure was reduced and also showed that the analyte signals and mass ablated from a target were strongly dependent on pressure. As the pressure decreased from 590 torr to the 40-100 torr range, the signals increased by a factor of about 3-4, and as the pressure was further reduced the signals decreased. This behavior can be explained by pressure-dependent changes in the mass of material vaporized and the frequency of collisions between species in the plasma. Changes in the temperature and the electron density of the plasmas with pressure were also examined and detection limits for selected elements were determined. Index Headings: Laser-induced breakdown spectroscopy; LIBS; Laser spark; Soil analysis; Space exploration.

PDF Article
More Like This
Laser-induced breakdown spectroscopy in industrial and security applications

Alexander A. Bol'shakov, Jong H. Yoo, Chunyi Liu, John R. Plumer, and Richard E. Russo
Appl. Opt. 49(13) C132-C142 (2010)

Laser ablation–laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils

Jhon Pareja, Sebastian López, Daniel Jaramillo, David W. Hahn, and Alejandro Molina
Appl. Opt. 52(11) 2470-2477 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved