Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 56,
  • Issue 12,
  • pp. 1552-1561
  • (2002)

Symmetrically Tapered <30-μm-thick Quasi-Planar Germanium Waveguides as Chemical Sensors for Microanalysis

Not Accessible

Your library or personal account may give you access

Abstract

Symmetrically tapered planar IR waveguides have been fabricated by starting with a ZnS coated concave piece of single-crystal Ge, embedding it in an epoxide resin as a supporting substrate, and then grinding and polishing a planar surface until the thickness at the taper minimum is <30 μm. Such tapering is expected to enhance a waveguide's sensitivity as an evanescent wave sensor by maximizing the amount of evanescent wave energy present at the thinnest part of the waveguide. As predicted by theory, the surface sensitivity, i.e., the absorbance signal per molecule in contact with the sensing region, increases with decreasing thickness of the tapered region even while the total energy throughput decreases. The signal-to-noise ratio obtained depends very strongly on the quality of the polished surfaces of the waveguides. The surface sensitivity is superior to that obtained with a commercial Ge attenuated total reflection (ATR) accessory for several types of sample, including thin fi lms (<10 ng) and small volumes (<1 μL) of volatile solvents. By using the waveguides, light-induced structural changes in the protein bacteriorhodopsin were observable using samples as small as ~50 pmol (~1 μg). In addition, the waveguide sensors can reveal the surface compositions on a single human hair, pointing to their promise as a tool for forensic fiber analysis.

PDF Article
More Like This
Supported planar germanium waveguides for infrared evanescent-wave sensing

Susan E. Plunkett, Steven Propst, and Mark S. Braiman
Appl. Opt. 36(18) 4055-4061 (1997)

Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor

Juejun Hu, Vladimir Tarasov, Anu Agarwal, Lionel Kimerling, Nathan Carlie, Laeticia Petit, and Kathleen Richardson
Opt. Express 15(5) 2307-2314 (2007)

Selenide sputtered films development for MIR environmental sensor

E. Baudet, A. Gutierrez-Arroyo, P. Němec, L. Bodiou, J. Lemaitre, O. De Sagazan, H. Lhermitte, E. Rinnert, K. Michel, B. Bureau, J. Charrier, and V. Nazabal
Opt. Mater. Express 6(8) 2616-2627 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.