Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 56,
  • Issue 4,
  • pp. 409-418
  • (2002)

Quantitative Depth Profiling Using Saturation-Equalized Photoacoustic Spectra

Not Accessible

Your library or personal account may give you access

Abstract

Depth profiling using photoacoustic spectra taken at multiple scanning speeds or modulation frequencies is normally impaired by the increase in spectral saturation that occurs with decreasing speed or frequency. Photothermal depth profiling in general is also impeded by the ill conditioned nature of the mathematical problem of determining a depth profile from photothermal data. This paper describes a method for reducing the saturation level in low-speed or low-frequency spectra to the level at high speed or frequency so that all spectra have the same saturation. The conversion method requires only magnitude spectra, so it is applicable to both conventional and phase-modulation photoacoustic spectra. This paper also demonstrates a method for quantitative depth profiling with these converted spectra that makes use of prior knowledge about the type of profile existing in a sample to reduce the instabilities associated with the mathematically ill conditioned task.

PDF Article
More Like This
Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics

Altaf Hussain, Wilma Petersen, Jacob Staley, Erwin Hondebrink, and Wiendelt Steenbergen
Opt. Lett. 41(8) 1720-1723 (2016)

Photoacoustic depth profiling by cross-correlation using a GaAs light emitting diode

Caesar Saloma and Albert Jose de Vera
Appl. Opt. 30(17) 2393-2397 (1991)

Quantitative Fourier transform IR photoacoustic spectroscopy of condensed phases

Y. C. Teng and B. S. H. Royce
Appl. Opt. 21(1) 77-80 (1982)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.