Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 56,
  • Issue 6,
  • pp. 725-731
  • (2002)

Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids: Pharmaceutical Tablets

Not Accessible

Your library or personal account may give you access

Abstract

Time-resolved spectroscopy in the visible and near-infrared (NIR) regions was used in a feasibility study for analysis of solid pharmaceuticals. The objective of the experiments was to study the interaction of light with pharmaceutical solids and to investigate the usefulness of the method as an analytical tool for spectroscopic analysis. In these experiments, a pulsed Ti:sapphire laser and white light generation in water was utilized to form a pulsed light source in the visible/NIR region. The light was focused onto the surface of tablets, and the transmitted light was detected by a time-resolving streak camera. Two types of measurements were performed. First, a spectrometer was put in front of the streak camera for spectral resolution. Secondly, the signal originating from different locations of the sample was collected. Time-resolved and wavelength/spatially resolved data were generated and compared for a number of different samples. The most striking result from the experiments is that the typical optical path length through a 3.5-mm-thick tablet is about 20-25 cm. This indicates very strong multiple scattering in these samples. Monte Carlo simulations and comparison with experimental data support very high scattering coefficients on the order of 500 cm<sup>-1</sup>. Furthermore, the data evaluation shows that photons with a particular propagation time through the sample contain a higher chemical contrast than other propagation times or than steady-state information. In conclusion, time-resolved NIR spectroscopy yields more information about solid pharmaceutical samples than conventional steady-state spectroscopy.

PDF Article
More Like This
Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges

Dmitry Khoptyar, Arman Ahamed Subash, Sören Johansson, Muhammad Saleem, Anders Sparén, Jonas Johansson, and Stefan Andersson-Engels
Opt. Express 21(18) 20941-20953 (2013)

Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber

Christoffer Abrahamsson, Tomas Svensson, Sune Svanberg, Stefan Andersson-Engels, Jonas Johansson, and Staffan Folestad
Opt. Express 12(17) 4103-4112 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.