Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 57,
  • Issue 11,
  • pp. 1363-1367
  • (2003)

Automated Method for Subtraction of Fluorescence from Biological Raman Spectra

Not Accessible

Your library or personal account may give you access

Abstract

One of the challenges of using Raman spectroscopy for biological applications is the inherent fluorescence generated by many biological molecules that underlies the measured spectra. This fluorescence can sometimes be several orders of magnitude more intense than the weak Raman scatter, and its presence must be minimized in order to resolve and analyze the Raman spectrum. Several techniques involving hardware and software have been devised for this purpose; these include the use of wavelength shifting, time gating, frequency-domain filtering, first- and second-order derivatives, and simple curve fitting of the broadband variation with a high-order polynomial. Of these, polynomial fitting has been found to be a simple but effective method. However, this technique typically requires user intervention and thus is time consuming and prone to variability. An automated method for fluorescence subtraction, based on a modification to least-squares polynomial curve fitting, is described. Results indicate that the presented automated method is proficient in fluorescence subtraction, repeatability, and in retention of Raman spectral lineshapes.

PDF Article
More Like This
Improved Savitzky–Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra

Kun Chen, Hongyuan Zhang, Haoyun Wei, and Yan Li
Appl. Opt. 53(24) 5559-5569 (2014)

Multi-excitation Raman spectroscopy technique for fluorescence rejection

Scott T. McCain, Rebecca M. Willett, and David J. Brady
Opt. Express 16(15) 10975-10991 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved