Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 63,
  • Issue 2,
  • pp. 199-206
  • (2009)

Assessment of a Novel Flow Visualization Technique Using Photodissociation Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

The study of complicated flows continuously calls for new nonintrusive flow diagnostics. A novel flow visualization technique based on photodissociation spectroscopy (PDS) is described, demonstrated, and assessed in this paper. This technique is centered around the creative use of photodissociation (PD). A PD precursor is seeded in the flow of interest, either passive or reactive. A laser pulse is then generated to completely and rapidly photodissociate both the precursor and the products formed from the precursor (if it reacts) into photofragments. A target photofragment is then imaged to obtain multidimensional information about the flow. An analytical methodology was developed to assess the feasibility of the PDS-based technique. This analytical method was applied to the case where molecular iodine was used as an example PD precursor, and the results were validated by experimental data. Both the analytical and experimental findings provided a promising outlook for this new technique as a practical flow visualization technique. With a properly chosen PD precursor, the PDS-based technique provides an attractive alternative for imaging several critical flow properties, including the mixture fraction and temperature field. This technique shares some key advantages with established techniques, e.g., a high spatial and temporal resolution comparable to the planar laser-induced fluorescence (PLIF) technique. Meanwhile, this technique offers several unique advantages to overcome the limitations of existing techniques, including enhancing the signal level and simplifying the interpretation of the signal.

PDF Article
More Like This
Quantitative flow visualization technique for measurements in combustion gases

George Kychakoff, Robert D. Howe, and Ronald K. Hanson
Appl. Opt. 23(5) 704-712 (1984)

Flame flow tagging velocimetry with 193-nm H2O photodissociation

Joseph A. Wehrmeyer, Lubomir A. Ribarov, Douglas A. Oguss, and Robert W. Pitz
Appl. Opt. 38(33) 6912-6917 (1999)

Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique

Rodrigo Sánchez-González, Ravi Srinivasan, Rodney D. W. Bowersox, and Simon W. North
Opt. Lett. 36(2) 196-198 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.