Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 59,
  • Issue 11,
  • pp. 1381-1387
  • (2005)

Scatter Correction of Transmission Near-Infrared Spectra by Photon Migration Data: Quantitative Analysis of Solids

Not Accessible

Your library or personal account may give you access

Abstract

The scope of this work is a new methodology to correct conventional near-infrared (NIR) data for scattering effects. The technique aims at measuring the absorption coefficient of the samples rather than the total attenuation measured in conventional NIR spectroscopy. The main advantage of this is that the absorption coefficient is independent of the path length of the light inside the sample and therefore independent of the scattering effects. The method is based on time-resolved spectroscopy and modeling of light transport by diffusion theory. This provides an independent measure of the scattering properties of the samples and therefore of the path length of light. This yields a clear advantage over other preprocessing techniques, where scattering effects are estimated and corrected for by using the shape of the measured spectrum only. Partial least squares (PLS) calibration models show that, by using the proposed evaluation scheme, the predictive ability is improved by 50% as compared to a model based on conventional NIR data alone. The method also makes it possible to predict the concentration of active substance in samples with other physical properties than the samples included in the calibration model.

PDF Article
More Like This
Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media

Andrew J. Berger, Vasan Venugopalan, Anthony J. Durkin, Tuan Pham, and Bruce J. Tromberg
Appl. Opt. 39(10) 1659-1667 (2000)

Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy

Yongni Shao, Yong He, and Jingyuan Mao
Appl. Opt. 46(25) 6391-6396 (2007)

Least-squares support vector machines modelization for time-resolved spectroscopy

Fabien Chauchard, Sylvie Roussel, Jean-Michel Roger, Véronique Bellon-Maurel, Christoffer Abrahamsson, Tomas Svensson, Stefan Andersson-Engels, and Sune Svanberg
Appl. Opt. 44(33) 7091-7097 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved